SQL Review Sheet

Organization of data

SQL Databases organize data in tables, which consist of rows and columns.

Each column contains one type of data (characters, integers, floating point numbers, date and time, etc.)

Rows are called records.

The number of columns in the table is fixed. The number of rows is not. Rows are added to the bottom, but there is no guarantee that a row (record) will be found in a specific place in the table.

ROW:

	
	StudentID
	LastName
	FirstName
	Grade

	1
	199943
	Smith
	John
	9

	2
	199965
	Jones
	Jane
	11

	3
	200012
	Ames
	Mark
	11

 COLUMN:

	
	StudentID
	LastName
	FirstName
	Grade

	1
	199943
	Smith
	John
	9

	2
	199965
	Jones
	Jane
	11

	3
	200012
	Ames
	Mark
	11

Operations on a table

Retrieval of data

 SELECT is used to retrieve data.

 The format of the SELECT statement is generally:

SELECT column_name [, column_name …] FROM table_name WHERE where_clause [ORDER BY column_name [DESC] [, column_name [DESC] …]]

 Where
· ‘column_name’ is the name (or number) of the column
· The character * is an abbreviation for all columns

· ‘table_name’ is the name of the table.

· ‘where_clause’ is a Boolean expression that is evaluated for the columns specified for each row in the table. When the clause evaluates to be true, the row is included in the select statement. The WHERE clause can be specified as follows

· WHERE comparison

· WHERE comparison [AND comparison|OR comparison …]

Let’s put this into action. Let’s use my ‘Students’ table:

	
	StudentID
	LastName
	FirstName
	Grade

	1
	199943
	Smith
	John
	9

	2
	199965
	Jones
	Jane
	11

	3
	200012
	Ames
	Mark
	11

Let’s retrieve the first and last name of all students in the 11th grade and sort them by last name.

SELECT * FROM Students

 returns everything (shown in red):

	
	StudentID
	LastName
	FirstName
	Grade

	1
	199943
	Smith
	John
	9

	2
	199965
	Jones
	Jane
	11

	3
	200012
	Ames
	Mark
	11

SELECT FirstName, LastName FROM Students

 narrows down the columns that we are returning:

	
	StudentID
	Last Name
	First Name
	Grade

	1
	199943
	Smith
	John
	9

	2
	199965
	Jones
	Jane
	11

	3
	200012
	Ames
	Mark
	11

SELECT FirstName, LastName FROM Students WHERE Grade = 11
 narrows down the rows to only those whose grade value is equal to 11:

	
	StudentID
	Last Name
	First Name
	Grade

	1
	199943
	Smith
	John
	9

	2
	199965
	Jones
	Jane
	11

	3
	200012
	Ames
	Mark
	11

SELECT FirstName, LastName FROM Students WHERE Grade = 11 ORDER BY LastName
 orders the rows so that they come back sorted alphabetically by last name:

	
	StudentID
	Last Name
	First Name
	Grade

	3
	200012
	Ames
	Mark
	11

	2
	199965
	Jones
	Jane
	11

	1
	199943
	Smith
	John
	9

So the result would be (in table form):

	Last Name
	First Name

	Ames
	Mark

	Jones
	Jane

 If you wanted to include all students named Jane or John, you could use

SELECT FirstName, LastName FROM Students WHERE FirstName = ‘Jane’ OR FirstName = ‘John’
	Last Name
	First Name

	Jones
	Jane

	Smith
	John

 If you want to list all information for a student named Mark Ames, you must specify that the FirstName is equal to one thing AND the LastName is equal to another:
SELECT * FROM Students WHERE FirstName = ‘Mark’ AND LastName = ‘Ames’
	
	StudentID
	Last Name
	First Name
	Grade

	3
	200012
	Ames
	Mark
	11

 To specify a RANGE of valid values, use two comparisons with AND. For example, to find all students with ID’s between 199960 and 200200, use this:

 SELECT * FROM Students WHERE StudentID >= 199960 AND StudentID <= 200200
	
	StudentID
	Last Name
	First Name
	Grade

	2
	199965
	Jones
	Jane
	11

	3
	200012
	Ames
	Mark
	11

SELECTING FROM MORE THAN ONE TABLE

Consider the following two tables

Meanings
	Color
	Meaning

	Red
	Stop

	Yellow
	Caution

	Green
	Go

Positions
	Color
	Position

	Red
	Top

	Yellow
	Middle

	Green
	Bottom

What if I want to know the meaning of the top light?
1. The common value that can be used to link the two tables is the ‘color’ column. Thus, I can look up the color of the top light:

SELECT Color FROM Positions WHERE Position = ‘Top’

And then use that value to look up the meaning of the color returned (Red).

SELECT Meaning from Meanings WHERE Color IN(‘Red’)

To do this all at once, I can do a SUBQUERY using the answer from one query in the other query

SELECT Meaning FROM Meanings WHERE Color IN (SELECT Color FROM Positions WHERE Position = ‘Top’)
2. I can also JOIN the two tables. The following is a representation of what happens

a. I select all columns from both tables and get the ‘cross product’ of the tables. Thus, for each row in the first table, we append each row of the 2nd table.

SELECT * FROM Positions,Meanings

	Color
	Position
	Color
	Meaning

	Red
	Top
	Red
	Stop

	Red
	Top
	Yellow
	Caution

	Red
	Top
	Green
	Go

	Yellow
	Middle
	Red
	Stop

	Yellow
	Middle
	Yellow
	Caution

	Yellow
	Middle
	Green
	Go

	Green
	Bottom
	Red
	Stop

	Green
	Bottom
	Yellow
	Caution

	Green
	Bottom
	Green
	Go

b. Then, I can narrow down the rows in the joined tables that make sense because their colors match:

SELECT * FROM Positions,Meanings WHERE Positions.Color = Meanings.Color

	Color
	Position
	Color
	Meaning

	Red
	Top
	Red
	Stop

	Red
	Top
	Yellow
	Caution

	Red
	Top
	Green
	Go

	Yellow
	Middle
	Red
	Stop

	Yellow
	Middle
	Yellow
	Caution

	Yellow
	Middle
	Green
	Go

	Green
	Bottom
	Red
	Stop

	Green
	Bottom
	Yellow
	Caution

	Green
	Bottom
	Green
	Go

c. Then, I can narrow down the rows to be the ones that match the position of the light

SELECT * FROM Positions,Meanings WHERE Positions.Color = Meanings.Color AND Positions.Position = ‘Top’

	Color
	Position
	Color
	Meaning

	Red
	Top
	Red
	Stop

	Red
	Top
	Yellow
	Caution

	Red
	Top
	Green
	Go

	Yellow
	Middle
	Red
	Stop

	Yellow
	Middle
	Yellow
	Caution

	Yellow
	Middle
	Green
	Go

	Green
	Bottom
	Red
	Stop

	Green
	Bottom
	Yellow
	Caution

	Green
	Bottom
	Green
	Go

d. I can now specify the column(s) I want to return

SELECT Meanings.Meaning FROM Positions,Meanings WHERE Positions.Color = Meanings.Color AND Positions.Position = ‘Top’

	Color
	Position
	Color
	Meaning

	Red
	Top
	Red
	Stop

	Red
	Top
	Yellow
	Caution

	Red
	Top
	Green
	Go

	Yellow
	Middle
	Red
	Stop

	Yellow
	Middle
	Yellow
	Caution

	Yellow
	Middle
	Green
	Go

	Green
	Bottom
	Red
	Stop

	Green
	Bottom
	Yellow
	Caution

	Green
	Bottom
	Green
	Go

CREATING A TABLE

CREATE TABLE tablename (Column_name Column_type, [Column_name Column_type…])

Example:

 CREATE TABLE Students (StudentID INT, LastName CHAR(255), FirstName CHAR(255), Grade INT)
DROPPING A TABLE

 DROP TABLE tablename
 Deletes all data from the table and deletes the definition of the table.
ADDING DATA

 INSERT INTO tablename (column_name [, column_name…]) VALUES (value [,value]…)

Example:

 INSERT INTO Students (StudentID, LastName, FirstName, Grade) VALUES (2002012, ‘Ames’, ‘Mark’, 11)
 Note that the number of values is the same as the number of columns (each value corresponds to its column).

DELETING ROWS

 DELETE FROM table_name WHERE where_clause

Deletes the rows from the table that match. If you leave out the ‘WHERE’, all rows are deleted. Use a SELECT first to see what you would delete and then replace ‘SELECT FROM’ with ‘DELETE FROM’.

Example:

 DELETE FROM Students WHERE StudentID = 200012

UPDATING INFORMATION IN ROWS

 UPDATE table_name SET column_name = new_value WHERE where_clause

Example:

 UPDATE Students SET Grade = 10 WHERE LastName = ‘Ames’

